Role of the O-antigen of lipopolysaccharide, and possible roles of growth rate and of NADH:ubiquinone oxidoreductase (nuo) in competitive tomato root-tip colonization by Pseudomonas fluorescens WCS365.
نویسندگان
چکیده
Colonization-defective, transposon-induced mutants of the efficient root colonizer Pseudomonas fluorescens WCS365 were identified with a gnotobiotic system. Most mutants were impaired in known colonization traits, i.e., prototrophy for amino acids, motility, and synthesis of the O-antigen of LPS (lipopolysaccharide). Mutants lacking the O-antigen of LPS were impaired in both colonization and competitive growth whereas one mutant (PCL1205) with a shorter O-antigen chain was defective only in colonization ability, suggesting a role for the intact O-antigen of LPS in colonization. Eight competitive colonization mutants that were not defective in the above-mentioned traits colonized the tomato root tip well when inoculated alone, but were defective in competitive root colonization of tomato, radish, and wheat, indicating they contained mutations affecting host range. One of these eight mutants (PCL1201) was further characterized and contains a mutation in a gene that shows homology to the Escherichia coli nuo4 gene, which encodes a subunit of one of two known NADH:ubiquinone oxidoreductases. Competition experiments in an oxygen-poor medium between mutant PCL1201 and its parental strain showed a decreased growth rate of mutant PCL1201. The requirement of the nuo4 gene homolog for optimal growth under conditions of oxygen limitation suggests that the root-tip environment is micro-aerobic. A mutant characterized by a slow growth rate (PCL1216) was analyzed further and contained a mutation in a gene with similarity to the E. coli HtrB protein, a lauroyl transferase that functions in lipid A biosynthesis.
منابع مشابه
Characterization of NADH dehydrogenases of Pseudomonas fluorescens WCS365 and their role in competitive root colonization.
The excellent-root-colonizing Pseudomonas fluorescens WCS365 was selected previously as the parental strain for the isolation of mutants impaired in root colonization. Transposon mutagenesis of WCS365 and testing for root colonization resulted in the isolation of mutant strain PCL1201, which is approximately 100-fold impaired in competitive tomato root colonization. In this manuscript, we provi...
متن کاملFlagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens.
Motility is a major trait for competitive tomato root-tip colonization by Pseudomonas fluorescens. To test the hypothesis that this role of motility is based on chemotaxis toward exudate components, cheA mutants that were defective in flagella-driven chemotaxis but retained motility were constructed in four P. fluorescens strains. After inoculation of seedlings with a 1:1 mixture of wild-type a...
متن کاملAmino Acid Synthesis Is Necessary for Tomato Root Colonization by Pseudomonas fluorescens Strain WCS365
In this work the bio-availability of amino acids for the root-colonizing Pseudomonas fluorescens strain WCS365 in the tomato rhizosphere was studied. The amino acid composition of axenically collected tomato root exudate was determined. The results show that aspartic acid, glutamic acid, isoleucine, leucine, and lysine are the major amino acid components. The concentrations of individual amino ...
متن کاملThe sss colonization gene of the tomato-Fusarium oxysporum f. sp. radicis-lycopersici biocontrol strain Pseudomonas fluorescens WCS365 can improve root colonization of other wild-type pseudomonas spp.bacteria.
We show that the disease tomato foot and root rot caused by the pathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici can be controlled by inoculation of seeds with cells of the efficient root colonizer Pseudomonas fluorescens WCS365, indicating that strain WCS365 is a biocontrol strain. The mechanism for disease suppression most likely is induced systemic resistance. P. fluorescens s...
متن کاملIncreased uptake of putrescine in the rhizosphere inhibits competitive root colonization by Pseudomonas fluorescens strain WCS365.
Sequence analysis of the chromosomal Tn5lacZ flanking regions of the Pseudomonas fluorescens WCS365 competitive root colonization mutant PCL1206 showed that the Tn5lacZ is inserted between genes homologous to bioA and potF. The latter gene is the first gene of the potF1F2GHI operon, which codes for a putrescine transport system in Escherichia coli. The position of the Tn5lacZ suggests an effect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular plant-microbe interactions : MPMI
دوره 11 8 شماره
صفحات -
تاریخ انتشار 1998